

 Navigation

 	
 index

 	
 next |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Jupyter Kernel Gateway

Jupyter Kernel Gateway is a web server that supports different mechanisms for
spawning and communicating with Jupyter kernels, such as:

	A Jupyter Notebook server-compatible HTTP API for requesting kernels and
talking the Jupyter kernel protocol [http://jupyter-client.readthedocs.org/en/latest/messaging.html]
with them over Websockets

	A HTTP API defined by annotated notebook cells that maps HTTP verbs and
resources to code to execute on a kernel

The server launches kernels in its local process/filesystem space. It can be
containerized and scaled out by a cluster manager (e.g.,
tmpnb [https://github.com/jupyter/tmpnb]).

Contents:

User Documentation

	Getting started
	Installation

	Try It

	Interesting Uses
	Example use with tmpnb

	Demos

	Features

	jupyter-websocket Mode

	notebook-http Mode
	Getting the Request Data

	Setting the Response Body

	Setting the Response Status and Headers

	Swagger Spec

	Running

Configuration

	KernelGatewayApp configuration options

	Troubleshooting

Contributor Documentation

	Development Installation
	Prerequisites

	Clone the repo

	Run the tests

	Run the gateway server

	Access the gateway

Community documentation

About Jupyter Kernel Gateway

	Summary of changes
	0.5

	0.4

	0.3

	0.2

	0.1

Questions? Suggestions?

	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]

	Jupyter website [https://jupyter.org]

	Stack Overflow - Jupyter [https://stackoverflow.com/questions/tagged/jupyter]

	Stack Overflow - Jupyter-notebook [https://stackoverflow.com/questions/tagged/jupyter-notebook]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Getting started

This document describes some of the basics of installing and configuring
Jupyter Kernel Gateway.

Installation

The Jupyter Kernel Gateway can be installed using pip.

install from pypi
pip install jupyter_kernel_gateway

As an alternative to installing the kernel gateway from pypi, one can also
use the minimal-kernel [https://hub.docker.com/r/jupyter/minimal-kernel/]
image from the docker-stacks [https://github.com/jupyter/docker-stacks]
project to try out its functionalities.

Additional information about using Docker with Jupyter Kernel Gateway is
found in the Developer Installation section.

Try It

These command allow you to quickly configure and run the kernel gateway:

show all config options
jupyter kernelgateway --help-all

run it with default options
jupyter kernelgateway

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Interesting Uses

These are just some of the interesting deployments by current users of the
Jupyter Kernel Gateway:

	Attach a local Jupyter Notebook server to a compute cluster in the cloud
running near big data (e.g., interactive gateway to Spark)

	Enable a new breed of non-notebook web clients to provision and use
kernels (e.g., dashboards using
jupyter-js-services [https://github.com/jupyter/jupyter-js-services])

	Scale kernels independently from clients (e.g., via
tmpnb [https://github.com/jupyter/tmpnb], Binder [http://mybinder.org/],
or your favorite cluster manager)

	Create microservices from notebooks via
notebook-http mode

Example use with tmpnb

The following diagram shows how tmpnb might deploy Jupyer Kernel Gateway
and kernel containers:

[image: Example diagram of how might deploy kernel gateway + kernel containers]

Demos

See the jupyter/kernel_gateway_demos [https://github.com/jupyter/kernel_gateway_demos]
repository for additional ideas.

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Features

The Jupyter Kernel Gateway provides a rich set of features and options:

	jupyter-websocket mode which provides a
Jupyter Notebook server-compatible API for requesting kernels and
communicating with them using Websockets

	notebook-http mode which maps HTTP requests to
cells in annotated notebooks

	Option to set a shared authentication token and require it from clients

	Options to set CORS headers for servicing browser-based clients

	Option to set a custom base URL (e.g., for running under tmpnb)

	Option to limit the number kernel instances a gateway server will launch
(e.g., to force scaling at the container level)

	Option to pre-spawn a set number of kernel instances

	Option to set a default kernel language to use when one is not specified
in the request

	Option to pre-populate kernel memory from a notebook

	Option to serve annotated notebooks as HTTP endpoints, see
notebook-http

	Option to allow downloading of the notebook source when running
notebook-http mode

	Automatic Swagger spec [http://swagger.io/introducing-the-open-api-initiative/]
for a notebook-defined API in notebook-http mode

	A CLI for launching the kernel gateway: jupyter kernelgateway OPTIONS

	A Python 2.7 and 3.3+ compatible implementation

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

jupyter-websocket Mode

The KernelGatewayApp.api command line argument defaults to
jupyter-websocket. In this mode, the kernel gateway defines the following
web resources:

	/api (metadata)

	/api/kernelspecs (what kernels are available)

	/api/kernels (kernel CRUD, with discovery disabled by default,
see --list_kernels)

	/api/kernels/:kernel_id/channels (Websocket-to-ZeroMQ [http://zeromq.org/]
transformer for the Jupyter kernel protocol [http://jupyter-client.readthedocs.org/en/latest/messaging.html])

	/api/sessions (session CRUD, for associating information with kernels,
discovery disabled by default, see --list_kernels)

	/_api/activity (activity metrics for all running kernels, enabled with
--list_kernels)

Discounting features of the kernel gateway (e.g., token auth), the behavior
of these resources is equivalent to that found in the Jupyter Notebook server.
The kernel gateway simply imports and extends the handler classes from
the Jupyter Notebook.

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

notebook-http Mode

The KernelGatewayApp.api command line argument can be set to notebook-http. In this mode, the kernel gateway exposes annotated cells in the KernelGatewayApp.seed_uri notebook as HTTP resources.

To turn a notebook cell into a HTTP handler, you must prefix it with a single line comment. The comment describes the HTTP method and resource, as in the following Python example:

GET /hello/world
print("hello world")

The annotation above declares the cell contents as the code to execute when the kernel gateway receives a HTTP GET request for the path /hello/world. For other languages, the comment prefix may change, but the rest of the annotation remains the same.

Multiple cells may share the same annotation. Their content is concatenated to form a single code segment at runtime. This facilitates typical, iterative development in notebooks with lots of short, separate cells: The notebook author does not need to merge all of the cells into one, or refactor to use functions.

GET /hello/world
print("I'm cell #1")

GET /hello/world
print("I'm cell #2")

Getting the Request Data

Before the gateway invokes an annotated cell, it sets the value of a global notebook variable named REQUEST to a JSON string containing information about the request. You may parse this string to access the request properties.

For example, in Python:

GET /hello/world
req = json.loads(REQUEST)
do something with req

You may specify path parameters when registering an endpoint by prepending a : to a path segment. For example, a path with parameters firstName and lastName would be defined as the following in a Python comment:

GET /hello/:firstName/:lastName

The REQUEST object currently contains the following properties:

	body - The value of the body, see the [Body And Content Type](#Request Content-Type and Request Body Processing) section below

	args - An object with keys representing query parameter names and their associated values. A query parameter name may be specified multiple times in a valid URL, and so each value is a sequence (e.g., list, array) of strings from the original URL.

	path - An object of key-value pairs representing path parameters and their values.

	headers - An object of key-value pairs where a key is a HTTP header name and a value is the HTTP header value. If there are multiple values are specified for a header, the value will be an array.

Request Content-Type and Request Body Processing

If the HTTP request to the kernel gateway has a Content-Type header the value of REQUEST.body may change. Below is the list of outcomes for various mime-types:

	application/json - The REQUEST.body will be an object of key-value pairs representing the request body

	multipart/form-data and application/x-www-form-urlencoded - The REQUEST.body will be an object of key-value pairs representing the parameters and their values. Files are currently not supported for multipart/form-data

	text/plain - The REQUEST.body will be the string value of the body

	All other types will be sent as strings

Setting the Response Body

The response from an annotated cell may be set in one of two ways:

	Writing to stdout in a notebook cell

	Emitting output in a notebook cell

The first method is preferred because it is explicit: a cell writes to stdout using the appropriate language statement or function (e.g. Python print, Scala println, R print, etc.). The kernel gateway collects all bytes from kernel stdout and returns the entire byte string verbatim as the response body.

The second approach is used if nothing appears on stdout. This method is dependent upon language semantics, kernel implementation, and library usage. The response body will be the content.data structure in the Jupyter execute_result [http://jupyter-client.readthedocs.org/en/latest/messaging.html#id4] message.

In both cases, the response defaults to status 200 OK and Content-Type: text/plain if cell execution completes without error. If an error occurs, the status is 500 Internal Server Error. If the HTTP request method is not one supported at the given path, the status is 405 Not Supported. If you wish to return custom status or headers, see the next section.

See the api_intro.ipynb [https://github.com/jupyter/kernel_gateway/blob/master/etc/api_examples/api_intro.ipynb] notebook for basic request and response examples.

Setting the Response Status and Headers

Annotated cells may have an optional metadata companion cell that sets the HTTP response status and headers. Consider this Python cell that creates a person entry in a database table and returns the new row ID in a JSON object:

POST /person
req = json.loads(REQUEST)
row_id = person_table.insert(req['body'])
res = {'id' : row_id}
print(json.dumps(res))

Now consider this companion cell which runs after the cell above and sets a custom response header and status:

ResponseInfo GET /hello/world
print(json.dumps({
 "headers" : {
 "Content-Type" : "application/json"
 },
 "status" : 201
}))

Currently, headers and status are the only fields supported. headers should be an object of key-value pairs mapping header names to header values. status should be an integer value. Both should be printed to stdout as JSON.

Given the two cells above, a POST request to /person produces a HTTP response like the following from the kernel gateway, assuming no errors occur:

HTTP/1.1 200 OK
Content-Type: application/json

{"id": 123}

See the setting_response_metadata.ipynb [https://github.com/jupyter/kernel_gateway/blob/master/etc/api_examples/setting_response_metadata.ipynb] notebook for examples of setting response metadata.

Swagger Spec

The resource /_api/spec/swagger.json is automatically generated from the notebook used to define the HTTP API. The response is a simple Swagger spec which can be used with the Swagger editor [http://editor.swagger.io/#], a Swagger ui [https://github.com/swagger-api/swagger-ui], or with any other Swagger-aware tool.

Currently, every response is listed as having a status of 200 OK.

Running

The minimum number of arguments needed to run in HTTP mode are --KernelGatewayApp.api=notebook-http and --KernelGatewayApp.seed_uri=some/notebook/file.ipynb.

If you development, you can run the kernel gateway in notebook-http mode using the Makefile in this repository:

make dev ARGS="--KernelGatewayApp.api='notebook-http' \
--KernelGatewayApp.seed_uri=/srv/kernel_gateway/etc/api_examples/api_intro.ipynb"

With the above Make command, all of the notebooks in etc/api_examples are
mounted into /srv/kernel_gateway/etc/api_examples/ and can be run in HTTP mode.

The notebook-http mode will honor the prespawn_count command line argument. This will start the specified number of kernels and execute the seed_uri notebook on each one. Requests will be distributed across the pool of prespawned kernels, providing a minimal layer of scalability. An example which starts a pool of 5 kernels follows:

make dev ARGS="--KernelGatewayApp.api='notebook-http' \
 --KernelGatewayApp.seed_uri=/srv/kernel_gateway/etc/api_examples/api_intro.ipynb" \
 --KernelGatewayApp.prespawn_count=5

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

KernelGatewayApp configuration options

Run jupyter kernelgateway --help-all after installation to see the
full set of server options. A snapshot of this help appears below:

KernelGatewayApp options

--KernelGatewayApp.allow_credentials=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Credentials header. (KG_ALLOW_CREDENTIALS env
 var)
--KernelGatewayApp.allow_headers=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Headers header. (KG_ALLOW_HEADERS env var)
--KernelGatewayApp.allow_methods=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Methods header. (KG_ALLOW_METHODS env var)
--KernelGatewayApp.allow_notebook_download=<Bool>
 Default: False
 Optional API to download the notebook source code in notebook-http mode,
 defaults to not allow
--KernelGatewayApp.allow_origin=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Origin header. (KG_ALLOW_ORIGIN env var)
--KernelGatewayApp.answer_yes=<Bool>
 Default: False
 Answer yes to any prompts.
--KernelGatewayApp.api=<Unicode>
 Default: 'jupyter-websocket'
 Controls which API to expose, that of a Jupyter kernel or the seed
 notebook's, using values "jupyter-websocket" or "notebook-http" (KG_API env
 var)
--KernelGatewayApp.auth_token=<Unicode>
 Default: ''
 Authorization token required for all requests (KG_AUTH_TOKEN env var)
--KernelGatewayApp.base_url=<Unicode>
 Default: ''
 The base path on which all API resources are mounted (KG_BASE_URL env var)
--KernelGatewayApp.config_file=<Unicode>
 Default: ''
 Full path of a config file.
--KernelGatewayApp.config_file_name=<Unicode>
 Default: ''
 Specify a config file to load.
--KernelGatewayApp.default_kernel_name=<Unicode>
 Default: ''
 The default kernel name to use when spawning a kernel
 (KG_DEFAULT_KERNEL_NAME env var)
--KernelGatewayApp.expose_headers=<Unicode>
 Default: ''
 Sets the Access-Control-Expose-Headers header. (KG_EXPOSE_HEADERS env var)
--KernelGatewayApp.generate_config=<Bool>
 Default: False
 Generate default config file.
--KernelGatewayApp.ip=<Unicode>
 Default: ''
 IP address on which to listen (KG_IP env var)
--KernelGatewayApp.list_kernels=<Bool>
 Default: False
 Enables listing the running kernels through /api/kernels and /api/sessions
 (KG_LIST_KERNELS env var). Note: Jupyter Notebook allows this by default but
 kernel gateway does not .
--KernelGatewayApp.log_datefmt=<Unicode>
 Default: '%Y-%m-%d %H:%M:%S'
 The date format used by logging formatters for %(asctime)s
--KernelGatewayApp.log_format=<Unicode>
 Default: '[%(name)s]%(highlevel)s %(message)s'
 The Logging format template
--KernelGatewayApp.log_level=<Enum>
 Default: 30
 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
 Set the log level by value or name.
--KernelGatewayApp.max_age=<Unicode>
 Default: ''
 Sets the Access-Control-Max-Age header. (KG_MAX_AGE env var)
--KernelGatewayApp.max_kernels=<Int>
 Default: 0
 Limits the number of kernel instances allowed to run by this gateway.
 (KG_MAX_KERNELS env var)
--KernelGatewayApp.port=<Int>
 Default: 0
 Port on which to listen (KG_PORT env var)
--KernelGatewayApp.prespawn_count=<Int>
 Default: None
 Number of kernels to prespawn using the default language. (KG_PRESPAWN_COUNT
 env var)
--KernelGatewayApp.seed_uri=<Unicode>
 Default: ''
 Runs the notebook (.ipynb) at the given URI on every kernel launched.
 (KG_SEED_URI env var)

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Troubleshooting

This document is under active development.

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Development Installation

This document gives instructions for setup of a Dockerized development
environment for the Jupyter Kernel Gateway.

Prerequisites

Docker installation for Mac users (optional)

On a Mac, do this one-time setup if you don’t have a local Docker environment
yet.

brew update

make sure you're on Docker >= 1.7
brew install docker-machine docker
docker-machine create -d virtualbox dev
eval "$(docker-machine env dev)"

Clone the repo

Clone this repository in a local directory that docker can volume mount:

make a directory under ~ to put source
mkdir -p ~/projects
cd !$

clone this repo
git clone https://github.com/jupyter/kernel_gateway.git

Run the tests

To run the tests:

make test-python3
make test-python2

Run the gateway server

To run the gateway server:

cd kernel_gateway
make dev

Access the gateway

To access the gateway instance:

	Run docker-machine ls and note the IP of the dev machine.

	Visit http://THAT_IP:8888/api in your browser where THAT_IP is the IP
address returned from the previous step. (Note that the
route /api/kernels is not enabled by default for greater security. See
the --KernelGatewayApp.list_kernels parameter documentation if you
would like to enable the /api/kernels route.)

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Summary of changes

See git log and CHANGELOG.md for a more detailed summary of changes.

0.5

0.4

0.4.0 (2016-02-17)

	Enable /_api/activity resource with stats about kernels in
jupyter-websocket mode

	Enable /api/sessions resource with in-memory name-to-kernel mapping for
non-notebook clients that want to look-up kernels by associated session name

	Fix prespawn kernel logic regression for jupyter-websocket mode

	Fix all handlers so that they return application/json responses on error

	Fix missing output from cells that emit display data in notebook-http mode

0.3

0.3.1 (2016-01-25)

	Fix CORS and auth token headers for /_api/spec/swagger.json resource

	Fix allow_origin handling for non-browser clients

	Ensure base path is prefixed with a forward slash

	Filter stderr from all responses in notebook-http mode

	Set Tornado logging level and Jupyter logging level together with
--log-level

0.3.0 (2016-01-15)

	Support setting of status and headers in notebook-http mode

	Support automatic, minimal Swagger doc generation in notebook-http mode

	Support download of a notebook in notebook-http mode

	Support CORS and token auth in notebook-http mode

	Expose HTTP request headers in notebook-http mode

	Support multipart form encoding in notebook-http mode

	Fix request value JSON encoding when passing requests to kernels

	Fix kernel name handling when pre-spawning

	Fix lack of access logs in notebook-http mode

0.2

0.2.0 (2015-12-15)

	Support notebook-defined HTTP APIs on a pool of kernels

	Disable kernel instance list by default

0.1

0.1.0 (2015-11-18)

	Support Jupyter Notebook kernel CRUD APIs and Jupyter kernel protocol over
Websockets

	Support shared token auth

	Support CORS headers

	Support base URL

	Support seeding kernels code from a notebook at a file path or URL

	Support default kernel, kernel pre-spawning, and kernel count limit

	First PyPI release

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Jupyter Kernel Gateway 0.5.0.dev documentation

Index

 Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_images/tmpnb_kernel_gateway.png
tmpnb cluster

Container Container Container
jupyter-js-services, POST /api/spawn ‘ ‘
Thebe, Notebook JS, |+ > tmpnb dockerd Container Container Container
etc. response: { “url": “<proxy url>" } ‘ ‘
Container Container Container

tmpnb-proxy
wssi//<proxy Url>/api/kernels/channels

Websocket
Container

kernel-gateway

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

